A library for reading data from Akka Actors using Spark SQL Streaming ( or Structured streaming.).
Using SBT:
libraryDependencies += "org.apache.bahir" %% "spark-sql-streaming-akka" % "2.3.0"
Using Maven:
<dependency>
<groupId>org.apache.bahir</groupId>
<artifactId>spark-sql-streaming-akka_2.11</artifactId>
<version>2.3.0</version>
</dependency>
This library can also be added to Spark jobs launched through spark-shell
or spark-submit
by using the --packages
command line option.
For example, to include it when starting the spark shell:
$ bin/spark-shell --packages org.apache.bahir:spark-sql-streaming-akka_2.11:2.3.0
Unlike using --jars
, using --packages
ensures that this library and its dependencies will be added to the classpath.
The --packages
argument can also be used with bin/spark-submit
.
This library is compiled for Scala 2.11 only, and intends to support Spark 2.0 onwards.
A SQL Stream can be created with data streams received from Akka Feeder actor using,
sqlContext.readStream
.format("org.apache.bahir.sql.streaming.akka.AkkaStreamSourceProvider")
.option("urlOfPublisher", "feederActorUri")
.load()
Setting values for option persistenceDirPath
helps in recovering in case of a restart, by restoring the state where it left off before the shutdown.
sqlContext.readStream
.format("org.apache.bahir.sql.streaming.akka.AkkaStreamSourceProvider")
.option("urlOfPublisher", "feederActorUri")
.option("persistenceDirPath", "/path/to/localdir")
.load()
This source uses Akka Actor api.
urlOfPublisher
The url of Publisher or Feeder actor that the Receiver actor connects to. Set this as the tcp url of the Publisher or Feeder actor.persistenceDirPath
By default it is used for storing incoming messages on disk.An example, for scala API to count words from incoming message stream.
// Create DataFrame representing the stream of input lines from connection
// to publisher or feeder actor
val lines = spark.readStream
.format("org.apache.bahir.sql.streaming.akka.AkkaStreamSourceProvider")
.option("urlOfPublisher", urlOfPublisher)
.load().as[(String, Timestamp)]
// Split the lines into words
val words = lines.map(_._1).flatMap(_.split(" "))
// Generate running word count
val wordCounts = words.groupBy("value").count()
// Start running the query that prints the running counts to the console
val query = wordCounts.writeStream
.outputMode("complete")
.format("console")
.start()
query.awaitTermination()
Please see AkkaStreamWordCount.scala
for full example.
An example, for Java API to count words from incoming message stream.
// Create DataFrame representing the stream of input lines from connection
// to publisher or feeder actor
Dataset<String> lines = spark
.readStream()
.format("org.apache.bahir.sql.streaming.akka.AkkaStreamSourceProvider")
.option("urlOfPublisher", urlOfPublisher)
.load().select("value").as(Encoders.STRING());
// Split the lines into words
Dataset<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
@Override
public Iterator<String> call(String s) throws Exception {
return Arrays.asList(s.split(" ")).iterator();
}
}, Encoders.STRING());
// Generate running word count
Dataset<Row> wordCounts = words.groupBy("value").count();
// Start running the query that prints the running counts to the console
StreamingQuery query = wordCounts.writeStream()
.outputMode("complete")
.format("console")
.start();
query.awaitTermination();
Please see JavaAkkaStreamWordCount.java
for full example.