A library for reading data from Cloudant or CouchDB databases using Spark SQL and Spark Streaming.
IBM® Cloudant® is a document-oriented DataBase as a Service (DBaaS). It stores data as documents in JSON format. It’s built with scalability, high availability, and durability in mind. It comes with a wide variety of indexing options including map-reduce, Cloudant Query, full-text indexing, and geospatial indexing. The replication capabilities make it easy to keep data in sync between database clusters, desktop PCs, and mobile devices.
Apache CouchDB™ is open source database software that focuses on ease of use and having an architecture that “completely embraces the Web”. It has a document-oriented NoSQL database architecture and is implemented in the concurrency-oriented language Erlang; it uses JSON to store data, JavaScript as its query language using MapReduce, and HTTP for an API.
Using SBT:
libraryDependencies += "org.apache.bahir" %% "spark-sql-cloudant" % "2.2.3"
Using Maven:
<dependency>
<groupId>org.apache.bahir</groupId>
<artifactId>spark-sql-cloudant_2.11</artifactId>
<version>2.2.3</version>
</dependency>
This library can also be added to Spark jobs launched through spark-shell
or spark-submit
by using the --packages
command line option.
$ bin/spark-shell --packages org.apache.bahir:spark-sql-cloudant_2.11:2.2.3
Unlike using --jars
, using --packages
ensures that this library and its dependencies will be added to the classpath.
The --packages
argument can also be used with bin/spark-submit
.
Submit a job in Python:
spark-submit --master local[4] --packages org.apache.bahir:spark-sql-cloudant_2.11:2.2.3 <path to python script>
Submit a job in Scala:
spark-submit --class "<your class>" --master local[4] --packages org.apache.bahir:spark-sql-cloudant_2.11:2.2.3 <path to spark-sql-cloudant jar>
This library is compiled for Scala 2.11 only, and intends to support Spark 2.0 onwards.
The configuration is obtained in the following sequence:
Here each subsequent configuration overrides the previous one. Thus, configuration set using DataFrame option overrides what has beens set in SparkConf. And configuration passed in spark-submit using –conf takes precedence over any setting in the code.
Default values are defined in here.
Name | Default | Meaning |
---|---|---|
cloudant.batchInterval | 8 | number of seconds to set for streaming all documents from _changes endpoint into Spark dataframe. See Setting the right batch interval for tuning this value. |
cloudant.endpoint | _all_docs |
endpoint for RelationProvider when loading data from Cloudant to DataFrames or SQL temporary tables. Select between the Cloudant _all_docs or _changes API endpoint. See Note below for differences between endpoints. |
cloudant.protocol | https | protocol to use to transfer data: http or https |
cloudant.host | cloudant host url | |
cloudant.username | cloudant userid | |
cloudant.password | cloudant password | |
cloudant.numberOfRetries | 3 | number of times to replay a request that received a 429 Too Many Requests response |
cloudant.useQuery | false | by default, _all_docs endpoint is used if configuration ‘view’ and ‘index’ (see below) are not set. When useQuery is enabled, _find endpoint will be used in place of _all_docs when query condition is not on primary key field (_id), so that query predicates may be driven into datastore. |
cloudant.queryLimit | 25 | the maximum number of results returned when querying the _find endpoint. |
cloudant.storageLevel | MEMORY_ONLY | the storage level for persisting Spark RDDs during load when cloudant.endpoint is set to _changes . See RDD Persistence section in Spark’s Progamming Guide for all available storage level options. |
cloudant.timeout | 60000 | stop the response after waiting the defined number of milliseconds for data. Only supported with changes endpoint. |
jsonstore.rdd.partitions | 10 | the number of partitions intent used to drive JsonStoreRDD loading query result in parallel. The actual number is calculated based on total rows returned and satisfying maxInPartition and minInPartition. Only supported with _all_docs endpoint. |
jsonstore.rdd.maxInPartition | -1 | the max rows in a partition. -1 means unlimited |
jsonstore.rdd.minInPartition | 10 | the min rows in a partition. |
jsonstore.rdd.requestTimeout | 900000 | the request timeout in milliseconds |
bulkSize | 200 | the bulk save size |
schemaSampleSize | -1 | the sample size for RDD schema discovery. 1 means we are using only the first document for schema discovery; -1 means all documents; 0 will be treated as 1; any number N means min(N, total) docs. Only supported with _all_docs endpoint. |
createDBOnSave | false | whether to create a new database during save operation. If false, a database should already exist. If true, a new database will be created. If true, and a database with a provided name already exists, an error will be raised. |
The cloudant.endpoint
option sets ` _changes or
_all_docs` API endpoint to be called while loading Cloudant data into Spark DataFrames or SQL Tables.
Note: When using _changes
API, please consider:
selector
option to filter Cloudant docs during loadWhen using _all_docs
API:
If loading Cloudant docs from a database greater than 100 MB, set cloudant.endpoint
to _changes
and spark.streaming.unpersist
to false
.
This will enable RDD persistence during load against _changes
endpoint and allow the persisted RDDs to be accessible after streaming completes.
See CloudantChangesDFSuite
for examples of loading data into a Spark DataFrame with _changes
API.
Besides all the configurations passed to a temporary table or dataframe through SparkConf, it is also possible to set the following configurations in temporary table or dataframe using OPTIONS:
Name | Default | Meaning |
---|---|---|
bulkSize | 200 | the bulk save size |
createDBOnSave | false | whether to create a new database during save operation. If false, a database should already exist. If true, a new database will be created. If true, and a database with a provided name already exists, an error will be raised. |
database | Cloudant database name | |
index | Cloudant Search index without the database name. Search index queries are limited to returning 200 results so can only be used to load data with <= 200 results. | |
path | Cloudant: as database name if database is not present | |
schemaSampleSize | -1 | the sample size used to discover the schema for this temp table. -1 scans all documents |
selector | all documents | a selector written in Cloudant Query syntax, specifying conditions for selecting documents when the cloudant.endpoint option is set to _changes . Only documents satisfying the selector’s conditions will be retrieved from Cloudant and loaded into Spark. |
view | Cloudant view w/o the database name. only used for load. |
For fast loading, views are loaded without include_docs. Thus, a derived schema will always be: {id, key, value}
, where value
can be a compount field. An example of loading data from a view:
spark.sql(" CREATE TEMPORARY TABLE flightTable1 USING org.apache.bahir.cloudant OPTIONS ( database 'n_flight', view '_design/view/_view/AA0')")
Name | Default | Meaning |
---|---|---|
cloudant.host | cloudant host url | |
cloudant.username | cloudant userid | |
cloudant.password | cloudant password | |
database | cloudant database name | |
selector | all documents | a selector written in Cloudant Query syntax, specifying conditions for selecting documents. Only documents satisfying the selector’s conditions will be retrieved from Cloudant and loaded into Spark. |
The above stated configuration keys can also be set using spark-submit --conf
option. When passing configuration in spark-submit, make sure adding “spark.” as prefix to the keys.
spark = SparkSession\
.builder\
.appName("Cloudant Spark SQL Example in Python using temp tables")\
.config("cloudant.host","ACCOUNT.cloudant.com")\
.config("cloudant.username", "USERNAME")\
.config("cloudant.password","PASSWORD")\
.getOrCreate()
# Loading temp table from Cloudant db
spark.sql(" CREATE TEMPORARY TABLE airportTable USING org.apache.bahir.cloudant OPTIONS ( database 'n_airportcodemapping')")
airportData = spark.sql("SELECT _id, airportName FROM airportTable WHERE _id >= 'CAA' AND _id <= 'GAA' ORDER BY _id")
airportData.printSchema()
print 'Total # of rows in airportData: ' + str(airportData.count())
for code in airportData.collect():
print code._id
See CloudantApp.py for examples.
Submit job example:
spark-submit --packages org.apache.bahir:spark-sql-cloudant_2.11:2.2.3 --conf spark.cloudant.host=ACCOUNT.cloudant.com --conf spark.cloudant.username=USERNAME --conf spark.cloudant.password=PASSWORD sql-cloudant/examples/python/CloudantApp.py
spark = SparkSession\
.builder\
.appName("Cloudant Spark SQL Example in Python using dataframes")\
.config("cloudant.host","ACCOUNT.cloudant.com")\
.config("cloudant.username", "USERNAME")\
.config("cloudant.password","PASSWORD")\
.config("jsonstore.rdd.partitions", 8)\
.getOrCreate()
# ***1. Loading dataframe from Cloudant db
df = spark.read.load("n_airportcodemapping", "org.apache.bahir.cloudant")
df.cache()
df.printSchema()
df.filter(df.airportName >= 'Moscow').select("_id",'airportName').show()
df.filter(df._id >= 'CAA').select("_id",'airportName').show()
See CloudantDF.py for examples.
In case of doing multiple operations on a dataframe (select, filter etc.),
you should persist a dataframe. Otherwise, every operation on a dataframe will load the same data from Cloudant again.
Persisting will also speed up computation. This statement will persist an RDD in memory: df.cache()
. Alternatively for large dbs to persist in memory & disk, use:
from pyspark import StorageLevel
df.persist(storageLevel = StorageLevel(True, True, False, True, 1))
Sample code on using DataFrame option to define cloudant configuration
val spark = SparkSession
.builder()
.appName("Cloudant Spark SQL Example")
.config("cloudant.host","ACCOUNT.cloudant.com")
.config("cloudant.username", "USERNAME")
.config("cloudant.password","PASSWORD")
.getOrCreate()
// For implicit conversions of Dataframe to RDDs
import spark.implicits._
// create a temp table from Cloudant db and query it using sql syntax
spark.sql(
s"""
|CREATE TEMPORARY TABLE airportTable
|USING org.apache.bahir.cloudant
|OPTIONS ( database 'n_airportcodemapping')
""".stripMargin)
// create a dataframe
val airportData = spark.sql("SELECT _id, airportName FROM airportTable WHERE _id >= 'CAA' AND _id <= 'GAA' ORDER BY _id")
airportData.printSchema()
println(s"Total # of rows in airportData: " + airportData.count())
// convert dataframe to array of Rows, and process each row
airportData.map(t => "code: " + t(0) + ",name:" + t(1)).collect().foreach(println)
See CloudantApp.scala for examples.
Submit job example:
spark-submit --class org.apache.spark.examples.sql.cloudant.CloudantApp --packages org.apache.bahir:spark-sql-cloudant_2.11:2.2.3 --conf spark.cloudant.host=ACCOUNT.cloudant.com --conf spark.cloudant.username=USERNAME --conf spark.cloudant.password=PASSWORD /path/to/spark-sql-cloudant_2.11-2.2.3-tests.jar
val spark = SparkSession
.builder()
.appName("Cloudant Spark SQL Example with Dataframe")
.config("cloudant.host","ACCOUNT.cloudant.com")
.config("cloudant.username", "USERNAME")
.config("cloudant.password","PASSWORD")
.config("createDBOnSave","true") // to create a db on save
.config("jsonstore.rdd.partitions", "20") // using 20 partitions
.getOrCreate()
// 1. Loading data from Cloudant db
val df = spark.read.format("org.apache.bahir.cloudant").load("n_flight")
// Caching df in memory to speed computations
// and not to retrieve data from cloudant again
df.cache()
df.printSchema()
// 2. Saving dataframe to Cloudant db
val df2 = df.filter(df("flightSegmentId") === "AA106")
.select("flightSegmentId","economyClassBaseCost")
df2.show()
df2.write.format("org.apache.bahir.cloudant").save("n_flight2")
See CloudantDF.scala for examples.
Sample code on using DataFrame option to define Cloudant configuration.
val ssc = new StreamingContext(sparkConf, Seconds(10))
val changes = ssc.receiverStream(new CloudantReceiver(Map(
"cloudant.host" -> "ACCOUNT.cloudant.com",
"cloudant.username" -> "USERNAME",
"cloudant.password" -> "PASSWORD",
"database" -> "n_airportcodemapping")))
changes.foreachRDD((rdd: RDD[String], time: Time) => {
// Get the singleton instance of SparkSession
val spark = SparkSessionSingleton.getInstance(rdd.sparkContext.getConf)
println(s"========= $time =========")
// Convert RDD[String] to DataFrame
val changesDataFrame = spark.read.json(rdd)
if (!changesDataFrame.schema.isEmpty) {
changesDataFrame.printSchema()
changesDataFrame.select("*").show()
....
}
})
ssc.start()
// run streaming for 120 secs
Thread.sleep(120000L)
ssc.stop(true)
See CloudantStreaming.scala for examples.
By default, Spark Streaming will load all documents from a database. If you want to limit the loading to
specific documents, use selector
option of CloudantReceiver
and specify your conditions
(See CloudantStreamingSelector.scala
example for more details):
val changes = ssc.receiverStream(new CloudantReceiver(Map(
"cloudant.host" -> "ACCOUNT.cloudant.com",
"cloudant.username" -> "USERNAME",
"cloudant.password" -> "PASSWORD",
"database" -> "sales",
"selector" -> "{\"month\":\"May\", \"rep\":\"John\"}")))