This project has retired. For details please refer to its Attic page.
Spark Data Source for Apache CouchDB/Cloudant

A library for reading data from Cloudant or CouchDB databases using Spark SQL and Spark Streaming.

IBM® Cloudant® is a document-oriented DataBase as a Service (DBaaS). It stores data as documents in JSON format. It’s built with scalability, high availability, and durability in mind. It comes with a wide variety of indexing options including map-reduce, Cloudant Query, full-text indexing, and geospatial indexing. The replication capabilities make it easy to keep data in sync between database clusters, desktop PCs, and mobile devices.

Apache CouchDB™ is open source database software that focuses on ease of use and having an architecture that “completely embraces the Web”. It has a document-oriented NoSQL database architecture and is implemented in the concurrency-oriented language Erlang; it uses JSON to store data, JavaScript as its query language using MapReduce, and HTTP for an API.

Linking

Using SBT:

libraryDependencies += "org.apache.bahir" %% "spark-sql-cloudant" % "2.2.0"

Using Maven:

<dependency>
    <groupId>org.apache.bahir</groupId>
    <artifactId>spark-sql-cloudant_2.11</artifactId>
    <version>2.2.0</version>
</dependency>

This library can also be added to Spark jobs launched through spark-shell or spark-submit by using the --packages command line option.

$ bin/spark-shell --packages org.apache.bahir:spark-sql-cloudant_2.11:2.2.0

Unlike using --jars, using --packages ensures that this library and its dependencies will be added to the classpath. The --packages argument can also be used with bin/spark-submit.

Submit a job in Python:

spark-submit  --master local[4] --jars <path to cloudant-spark.jar>  <path to python script> 

Submit a job in Scala:

spark-submit --class "<your class>" --master local[4] --jars <path to cloudant-spark.jar> <path to your app jar>

This library is compiled for Scala 2.11 only, and intends to support Spark 2.0 onwards.

Configuration options

The configuration is obtained in the following sequence:

  1. default in the Config, which is set in the application.conf
  2. key in the SparkConf, which is set in SparkConf
  3. key in the parameters, which is set in a dataframe or temporaty table options
  4. “spark.”+key in the SparkConf (as they are treated as the one passed in through spark-submit using –conf option)

Here each subsequent configuration overrides the previous one. Thus, configuration set using DataFrame option overrides what has beens set in SparkConf. And configuration passed in spark-submit using –conf takes precedence over any setting in the code.

Configuration in application.conf

Default values are defined in here.

Configuration on SparkConf

Name Default Meaning
cloudant.protocol https protocol to use to transfer data: http or https
cloudant.host   cloudant host url
cloudant.username   cloudant userid
cloudant.password   cloudant password
cloudant.useQuery false By default, _all_docs endpoint is used if configuration ‘view’ and ‘index’ (see below) are not set. When useQuery is enabled, _find endpoint will be used in place of _all_docs when query condition is not on primary key field (_id), so that query predicates may be driven into datastore.
cloudant.queryLimit 25 The maximum number of results returned when querying the _find endpoint.
jsonstore.rdd.partitions 10 the number of partitions intent used to drive JsonStoreRDD loading query result in parallel. The actual number is calculated based on total rows returned and satisfying maxInPartition and minInPartition
jsonstore.rdd.maxInPartition -1 the max rows in a partition. -1 means unlimited
jsonstore.rdd.minInPartition 10 the min rows in a partition.
jsonstore.rdd.requestTimeout 900000 the request timeout in milliseconds
bulkSize 200 the bulk save size
schemaSampleSize “-1” the sample size for RDD schema discovery. 1 means we are using only first document for schema discovery; -1 means all documents; 0 will be treated as 1; any number N means min(N, total) docs
createDBOnSave “false” whether to create a new database during save operation. If false, a database should already exist. If true, a new database will be created. If true, and a database with a provided name already exists, an error will be raised.

Configuration on Spark SQL Temporary Table or DataFrame

Besides all the configurations passed to a temporary table or dataframe through SparkConf, it is also possible to set the following configurations in temporary table or dataframe using OPTIONS:

Name Default Meaning
database   cloudant database name
view   cloudant view w/o the database name. only used for load.
index   cloudant search index w/o the database name. only used for load data with less than or equal to 200 results.
path   cloudant: as database name if database is not present
schemaSampleSize “-1” the sample size used to discover the schema for this temp table. -1 scans all documents
bulkSize 200 the bulk save size
createDBOnSave “false” whether to create a new database during save operation. If false, a database should already exist. If true, a new database will be created. If true, and a database with a provided name already exists, an error will be raised.

For fast loading, views are loaded without include_docs. Thus, a derived schema will always be: {id, key, value}, where value can be a compount field. An example of loading data from a view:

spark.sql(" CREATE TEMPORARY TABLE flightTable1 USING org.apache.bahir.cloudant OPTIONS ( database 'n_flight', view '_design/view/_view/AA0')")

Configuration on Cloudant Receiver for Spark Streaming

Name Default Meaning
cloudant.host   cloudant host url
cloudant.username   cloudant userid
cloudant.password   cloudant password
database   cloudant database name
selector all documents a selector written in Cloudant Query syntax, specifying conditions for selecting documents. Only documents satisfying the selector’s conditions will be retrieved from Cloudant and loaded into Spark.

Configuration in spark-submit using –conf option

The above stated configuration keys can also be set using spark-submit --conf option. When passing configuration in spark-submit, make sure adding “spark.” as prefix to the keys.

Examples

Python API

Using SQL In Python

spark = SparkSession\
    .builder\
    .appName("Cloudant Spark SQL Example in Python using temp tables")\
    .config("cloudant.host","ACCOUNT.cloudant.com")\
    .config("cloudant.username", "USERNAME")\
    .config("cloudant.password","PASSWORD")\
    .getOrCreate()


# Loading temp table from Cloudant db
spark.sql(" CREATE TEMPORARY TABLE airportTable USING org.apache.bahir.cloudant OPTIONS ( database 'n_airportcodemapping')")
airportData = spark.sql("SELECT _id, airportName FROM airportTable WHERE _id >= 'CAA' AND _id <= 'GAA' ORDER BY _id")
airportData.printSchema()
print 'Total # of rows in airportData: ' + str(airportData.count())
for code in airportData.collect():
    print code._id

See CloudantApp.py for examples.

Submit job example:

spark-submit  --packages org.apache.bahir:spark-sql-cloudant_2.11:2.2.0 --conf spark.cloudant.host=ACCOUNT.cloudant.com --conf spark.cloudant.username=USERNAME --conf spark.cloudant.password=PASSWORD sql-cloudant/examples/python/CloudantApp.py

Using DataFrame In Python

spark = SparkSession\
    .builder\
    .appName("Cloudant Spark SQL Example in Python using dataframes")\
    .config("cloudant.host","ACCOUNT.cloudant.com")\
    .config("cloudant.username", "USERNAME")\
    .config("cloudant.password","PASSWORD")\
    .config("jsonstore.rdd.partitions", 8)\
    .getOrCreate()

# ***1. Loading dataframe from Cloudant db
df = spark.read.load("n_airportcodemapping", "org.apache.bahir.cloudant")
df.cache() 
df.printSchema()
df.filter(df.airportName >= 'Moscow').select("_id",'airportName').show()
df.filter(df._id >= 'CAA').select("_id",'airportName').show()	    

See CloudantDF.py for examples.

In case of doing multiple operations on a dataframe (select, filter etc.), you should persist a dataframe. Otherwise, every operation on a dataframe will load the same data from Cloudant again. Persisting will also speed up computation. This statement will persist an RDD in memory: df.cache(). Alternatively for large dbs to persist in memory & disk, use:

from pyspark import StorageLevel
df.persist(storageLevel = StorageLevel(True, True, False, True, 1))

Sample code on using DataFrame option to define cloudant configuration

Scala API

Using SQL In Scala

val spark = SparkSession
      .builder()
      .appName("Cloudant Spark SQL Example")
      .config("cloudant.host","ACCOUNT.cloudant.com")
      .config("cloudant.username", "USERNAME")
      .config("cloudant.password","PASSWORD")
      .getOrCreate()

// For implicit conversions of Dataframe to RDDs
import spark.implicits._
    
// create a temp table from Cloudant db and query it using sql syntax
spark.sql(
    s"""
    |CREATE TEMPORARY TABLE airportTable
    |USING org.apache.bahir.cloudant
    |OPTIONS ( database 'n_airportcodemapping')
    """.stripMargin)
// create a dataframe
val airportData = spark.sql("SELECT _id, airportName FROM airportTable WHERE _id >= 'CAA' AND _id <= 'GAA' ORDER BY _id")
airportData.printSchema()
println(s"Total # of rows in airportData: " + airportData.count())
// convert dataframe to array of Rows, and process each row
airportData.map(t => "code: " + t(0) + ",name:" + t(1)).collect().foreach(println)

See CloudantApp.scala for examples.

Submit job example:

spark-submit --class org.apache.spark.examples.sql.cloudant.CloudantApp --packages org.apache.bahir:spark-sql-cloudant_2.11:2.2.0 --conf spark.cloudant.host=ACCOUNT.cloudant.com --conf spark.cloudant.username=USERNAME --conf spark.cloudant.password=PASSWORD  /path/to/spark-sql-cloudant_2.11-2.2.0-tests.jar

Using DataFrame In Scala

val spark = SparkSession
      .builder()
      .appName("Cloudant Spark SQL Example with Dataframe")
      .config("cloudant.host","ACCOUNT.cloudant.com")
      .config("cloudant.username", "USERNAME")
      .config("cloudant.password","PASSWORD")
      .config("createDBOnSave","true") // to create a db on save
      .config("jsonstore.rdd.partitions", "20") // using 20 partitions
      .getOrCreate()
          
// 1. Loading data from Cloudant db
val df = spark.read.format("org.apache.bahir.cloudant").load("n_flight")
// Caching df in memory to speed computations
// and not to retrieve data from cloudant again
df.cache() 
df.printSchema()

// 2. Saving dataframe to Cloudant db
val df2 = df.filter(df("flightSegmentId") === "AA106")
    .select("flightSegmentId","economyClassBaseCost")
df2.show()
df2.write.format("org.apache.bahir.cloudant").save("n_flight2")

See CloudantDF.scala for examples.

Sample code on using DataFrame option to define Cloudant configuration.

Using Streams In Scala

val ssc = new StreamingContext(sparkConf, Seconds(10))
val changes = ssc.receiverStream(new CloudantReceiver(Map(
  "cloudant.host" -> "ACCOUNT.cloudant.com",
  "cloudant.username" -> "USERNAME",
  "cloudant.password" -> "PASSWORD",
  "database" -> "n_airportcodemapping")))

changes.foreachRDD((rdd: RDD[String], time: Time) => {
  // Get the singleton instance of SparkSession
  val spark = SparkSessionSingleton.getInstance(rdd.sparkContext.getConf)

  println(s"========= $time =========")
  // Convert RDD[String] to DataFrame
  val changesDataFrame = spark.read.json(rdd)
  if (!changesDataFrame.schema.isEmpty) {
    changesDataFrame.printSchema()
    changesDataFrame.select("*").show()
    ....
  }
})
ssc.start()
// run streaming for 120 secs
Thread.sleep(120000L)
ssc.stop(true)
	

See CloudantStreaming.scala for examples.

By default, Spark Streaming will load all documents from a database. If you want to limit the loading to specific documents, use selector option of CloudantReceiver and specify your conditions (See CloudantStreamingSelector.scala example for more details):

val changes = ssc.receiverStream(new CloudantReceiver(Map(
  "cloudant.host" -> "ACCOUNT.cloudant.com",
  "cloudant.username" -> "USERNAME",
  "cloudant.password" -> "PASSWORD",
  "database" -> "sales",
  "selector" -> "{\"month\":\"May\", \"rep\":\"John\"}")))