This project has retired. For details please refer to its Attic page.
Spark Data Source for Apache CouchDB/Cloudant

A library for reading data from Cloudant or CouchDB databases using Spark SQL and Spark Streaming.

IBM® Cloudant® is a document-oriented DataBase as a Service (DBaaS). It stores data as documents in JSON format. It’s built with scalability, high availability, and durability in mind. It comes with a wide variety of indexing options including map-reduce, Cloudant Query, full-text indexing, and geospatial indexing. The replication capabilities make it easy to keep data in sync between database clusters, desktop PCs, and mobile devices.

Apache CouchDB™ is open source database software that focuses on ease of use and having an architecture that “completely embraces the Web”. It has a document-oriented NoSQL database architecture and is implemented in the concurrency-oriented language Erlang; it uses JSON to store data, JavaScript as its query language using MapReduce, and HTTP for an API.

Linking

Using SBT:

libraryDependencies += "org.apache.bahir" %% "spark-sql-cloudant" % "2.3.1"

Using Maven:

<dependency>
    <groupId>org.apache.bahir</groupId>
    <artifactId>spark-sql-cloudant_2.11</artifactId>
    <version>2.3.1</version>
</dependency>

This library can also be added to Spark jobs launched through spark-shell or spark-submit by using the --packages command line option.

$ bin/spark-shell --packages org.apache.bahir:spark-sql-cloudant_2.11:2.3.1

Unlike using --jars, using --packages ensures that this library and its dependencies will be added to the classpath. The --packages argument can also be used with bin/spark-submit.

Submit a job in Python:

spark-submit  --master local[4] --packages org.apache.bahir:spark-sql-cloudant__2.11:2.3.1  <path to python script>

Submit a job in Scala:

spark-submit --class "<your class>" --master local[4] --packages org.apache.bahir:spark-sql-cloudant__2.11:2.3.1 <path to spark-sql-cloudant jar>

This library is compiled for Scala 2.11 only, and intends to support Spark 2.0 onwards.

Configuration options

The configuration is obtained in the following sequence:

  1. default in the Config, which is set in the application.conf
  2. key in the SparkConf, which is set in SparkConf
  3. key in the parameters, which is set in a dataframe or temporaty table options
  4. “spark.”+key in the SparkConf (as they are treated as the one passed in through spark-submit using –conf option)

Here each subsequent configuration overrides the previous one. Thus, configuration set using DataFrame option overrides what has beens set in SparkConf. And configuration passed in spark-submit using –conf takes precedence over any setting in the code.

Configuration in application.conf

Default values are defined in here.

Configuration on SparkConf

Name Default Meaning
cloudant.batchInterval 8 number of seconds to set for streaming all documents from _changes endpoint into Spark dataframe. See Setting the right batch interval for tuning this value.
cloudant.endpoint _all_docs endpoint for RelationProvider when loading data from Cloudant to DataFrames or SQL temporary tables. Select between the Cloudant _all_docs or _changes API endpoint. See Note below for differences between endpoints.
cloudant.protocol https protocol to use to transfer data: http or https
cloudant.host   cloudant host url
cloudant.username   cloudant userid
cloudant.password   cloudant password
cloudant.numberOfRetries 3 number of times to replay a request that received a 429 Too Many Requests response
cloudant.useQuery false by default, _all_docs endpoint is used if configuration ‘view’ and ‘index’ (see below) are not set. When useQuery is enabled, _find endpoint will be used in place of _all_docs when query condition is not on primary key field (_id), so that query predicates may be driven into datastore.
cloudant.queryLimit 25 the maximum number of results returned when querying the _find endpoint.
cloudant.storageLevel MEMORY_ONLY the storage level for persisting Spark RDDs during load when cloudant.endpoint is set to _changes. See RDD Persistence section in Spark’s Progamming Guide for all available storage level options.
cloudant.timeout 60000 stop the response after waiting the defined number of milliseconds for data. Only supported with changes endpoint.
jsonstore.rdd.partitions 10 the number of partitions intent used to drive JsonStoreRDD loading query result in parallel. The actual number is calculated based on total rows returned and satisfying maxInPartition and minInPartition. Only supported with _all_docs endpoint.
jsonstore.rdd.maxInPartition -1 the max rows in a partition. -1 means unlimited
jsonstore.rdd.minInPartition 10 the min rows in a partition.
jsonstore.rdd.requestTimeout 900000 the request timeout in milliseconds
bulkSize 200 the bulk save size
schemaSampleSize -1 the sample size for RDD schema discovery. 1 means we are using only the first document for schema discovery; -1 means all documents; 0 will be treated as 1; any number N means min(N, total) docs. Only supported with _all_docs endpoint.
createDBOnSave false whether to create a new database during save operation. If false, a database should already exist. If true, a new database will be created. If true, and a database with a provided name already exists, an error will be raised.

The cloudant.endpoint option sets ` _changes or _all_docs` API endpoint to be called while loading Cloudant data into Spark DataFrames or SQL Tables.

Note: When using _changes API, please consider:

  1. Results are partially ordered and may not be be presented in order in which documents were updated.
  2. In case of shards’ unavailability, you may see duplicate results (changes that have been seen already)
  3. Can use selector option to filter Cloudant docs during load
  4. Supports a real snapshot of the database and represents it in a single point of time.
  5. Only supports a single partition.

When using _all_docs API:

  1. Supports parallel reads (using offset and range) and partitioning.
  2. Using partitions may not represent the true snapshot of a database. Some docs may be added or deleted in the database between loading data into different Spark partitions.

If loading Cloudant docs from a database greater than 100 MB, set cloudant.endpoint to _changes and spark.streaming.unpersist to false. This will enable RDD persistence during load against _changes endpoint and allow the persisted RDDs to be accessible after streaming completes.

See CloudantChangesDFSuite for examples of loading data into a Spark DataFrame with _changes API.

Configuration on Spark SQL Temporary Table or DataFrame

Besides all the configurations passed to a temporary table or dataframe through SparkConf, it is also possible to set the following configurations in temporary table or dataframe using OPTIONS:

Name Default Meaning
bulkSize 200 the bulk save size
createDBOnSave false whether to create a new database during save operation. If false, a database should already exist. If true, a new database will be created. If true, and a database with a provided name already exists, an error will be raised.
database   Cloudant database name
index   Cloudant Search index without the database name. Search index queries are limited to returning 200 results so can only be used to load data with <= 200 results.
path   Cloudant: as database name if database is not present
schemaSampleSize -1 the sample size used to discover the schema for this temp table. -1 scans all documents
selector all documents a selector written in Cloudant Query syntax, specifying conditions for selecting documents when the cloudant.endpoint option is set to _changes. Only documents satisfying the selector’s conditions will be retrieved from Cloudant and loaded into Spark.
view   Cloudant view w/o the database name. only used for load.

For fast loading, views are loaded without include_docs. Thus, a derived schema will always be: {id, key, value}, where value can be a compount field. An example of loading data from a view:

spark.sql(" CREATE TEMPORARY TABLE flightTable1 USING org.apache.bahir.cloudant OPTIONS ( database 'n_flight', view '_design/view/_view/AA0')")

Configuration on Cloudant Receiver for Spark Streaming

Name Default Meaning
cloudant.host   cloudant host url
cloudant.username   cloudant userid
cloudant.password   cloudant password
database   cloudant database name
selector all documents a selector written in Cloudant Query syntax, specifying conditions for selecting documents. Only documents satisfying the selector’s conditions will be retrieved from Cloudant and loaded into Spark.

Configuration in spark-submit using –conf option

The above stated configuration keys can also be set using spark-submit --conf option. When passing configuration in spark-submit, make sure adding “spark.” as prefix to the keys.

Examples

Python API

Using SQL In Python

spark = SparkSession\
    .builder\
    .appName("Cloudant Spark SQL Example in Python using temp tables")\
    .config("cloudant.host","ACCOUNT.cloudant.com")\
    .config("cloudant.username", "USERNAME")\
    .config("cloudant.password","PASSWORD")\
    .getOrCreate()


# Loading temp table from Cloudant db
spark.sql(" CREATE TEMPORARY TABLE airportTable USING org.apache.bahir.cloudant OPTIONS ( database 'n_airportcodemapping')")
airportData = spark.sql("SELECT _id, airportName FROM airportTable WHERE _id >= 'CAA' AND _id <= 'GAA' ORDER BY _id")
airportData.printSchema()
print 'Total # of rows in airportData: ' + str(airportData.count())
for code in airportData.collect():
    print code._id

See CloudantApp.py for examples.

Submit job example:

spark-submit  --packages org.apache.bahir:spark-sql-cloudant_2.11:2.3.1 --conf spark.cloudant.host=ACCOUNT.cloudant.com --conf spark.cloudant.username=USERNAME --conf spark.cloudant.password=PASSWORD sql-cloudant/examples/python/CloudantApp.py

Using DataFrame In Python

spark = SparkSession\
    .builder\
    .appName("Cloudant Spark SQL Example in Python using dataframes")\
    .config("cloudant.host","ACCOUNT.cloudant.com")\
    .config("cloudant.username", "USERNAME")\
    .config("cloudant.password","PASSWORD")\
    .config("jsonstore.rdd.partitions", 8)\
    .getOrCreate()

# ***1. Loading dataframe from Cloudant db
df = spark.read.load("n_airportcodemapping", "org.apache.bahir.cloudant")
df.cache()
df.printSchema()
df.filter(df.airportName >= 'Moscow').select("_id",'airportName').show()
df.filter(df._id >= 'CAA').select("_id",'airportName').show()	    

See CloudantDF.py for examples.

In case of doing multiple operations on a dataframe (select, filter etc.), you should persist a dataframe. Otherwise, every operation on a dataframe will load the same data from Cloudant again. Persisting will also speed up computation. This statement will persist an RDD in memory: df.cache(). Alternatively for large dbs to persist in memory & disk, use:

from pyspark import StorageLevel
df.persist(storageLevel = StorageLevel(True, True, False, True, 1))

Sample code on using DataFrame option to define cloudant configuration

Scala API

Using SQL In Scala

val spark = SparkSession
      .builder()
      .appName("Cloudant Spark SQL Example")
      .config("cloudant.host","ACCOUNT.cloudant.com")
      .config("cloudant.username", "USERNAME")
      .config("cloudant.password","PASSWORD")
      .getOrCreate()

// For implicit conversions of Dataframe to RDDs
import spark.implicits._

// create a temp table from Cloudant db and query it using sql syntax
spark.sql(
    s"""
    |CREATE TEMPORARY TABLE airportTable
    |USING org.apache.bahir.cloudant
    |OPTIONS ( database 'n_airportcodemapping')
    """.stripMargin)
// create a dataframe
val airportData = spark.sql("SELECT _id, airportName FROM airportTable WHERE _id >= 'CAA' AND _id <= 'GAA' ORDER BY _id")
airportData.printSchema()
println(s"Total # of rows in airportData: " + airportData.count())
// convert dataframe to array of Rows, and process each row
airportData.map(t => "code: " + t(0) + ",name:" + t(1)).collect().foreach(println)

See CloudantApp.scala for examples.

Submit job example:

spark-submit --class org.apache.spark.examples.sql.cloudant.CloudantApp --packages org.apache.bahir:spark-sql-cloudant_2.11:2.3.1 --conf spark.cloudant.host=ACCOUNT.cloudant.com --conf spark.cloudant.username=USERNAME --conf spark.cloudant.password=PASSWORD  /path/to/spark-sql-cloudant_2.11-2.3.1-tests.jar

Using DataFrame In Scala

val spark = SparkSession
      .builder()
      .appName("Cloudant Spark SQL Example with Dataframe")
      .config("cloudant.host","ACCOUNT.cloudant.com")
      .config("cloudant.username", "USERNAME")
      .config("cloudant.password","PASSWORD")
      .config("createDBOnSave","true") // to create a db on save
      .config("jsonstore.rdd.partitions", "20") // using 20 partitions
      .getOrCreate()

// 1. Loading data from Cloudant db
val df = spark.read.format("org.apache.bahir.cloudant").load("n_flight")
// Caching df in memory to speed computations
// and not to retrieve data from cloudant again
df.cache()
df.printSchema()

// 2. Saving dataframe to Cloudant db
val df2 = df.filter(df("flightSegmentId") === "AA106")
    .select("flightSegmentId","economyClassBaseCost")
df2.show()
df2.write.format("org.apache.bahir.cloudant").save("n_flight2")

See CloudantDF.scala for examples.

Sample code on using DataFrame option to define Cloudant configuration.

Using Streams In Scala

val ssc = new StreamingContext(sparkConf, Seconds(10))
val changes = ssc.receiverStream(new CloudantReceiver(Map(
  "cloudant.host" -> "ACCOUNT.cloudant.com",
  "cloudant.username" -> "USERNAME",
  "cloudant.password" -> "PASSWORD",
  "database" -> "n_airportcodemapping")))

changes.foreachRDD((rdd: RDD[String], time: Time) => {
  // Get the singleton instance of SparkSession
  val spark = SparkSessionSingleton.getInstance(rdd.sparkContext.getConf)

  println(s"========= $time =========")
  // Convert RDD[String] to DataFrame
  val changesDataFrame = spark.read.json(rdd)
  if (!changesDataFrame.schema.isEmpty) {
    changesDataFrame.printSchema()
    changesDataFrame.select("*").show()
    ....
  }
})
ssc.start()
// run streaming for 120 secs
Thread.sleep(120000L)
ssc.stop(true)

See CloudantStreaming.scala for examples.

By default, Spark Streaming will load all documents from a database. If you want to limit the loading to specific documents, use selector option of CloudantReceiver and specify your conditions (See CloudantStreamingSelector.scala example for more details):

val changes = ssc.receiverStream(new CloudantReceiver(Map(
  "cloudant.host" -> "ACCOUNT.cloudant.com",
  "cloudant.username" -> "USERNAME",
  "cloudant.password" -> "PASSWORD",
  "database" -> "sales",
  "selector" -> "{\"month\":\"May\", \"rep\":\"John\"}")))